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Bose-Einstein and Fermi-Dirac are the main quantum statistics. Therefore, it is 
likely that if truly elementary building blocks of Nature exist, they are either 
bosons or fermions, so that it is also likely that one, and only one, of the 
following possibilities, concerning those elementary building blocks, is correct: (i) 
all of them are fermions; (ii) some of them are bosons, others fermions; (iii) all of 
them are bosons: (iv) the distinction between these cases is methodological, not 
physical. Since tensors can be constructed from spinors, most physicists support 
one of the first two points of view. However, by starting from the fact that now it 
is known that bosonization makes sense, and developing a former research by 
Penney, we defend the point of view that, at least in a finite model of the 
Urfiverse, the third point of view is the more likely. To avoid confusion we state 
that we are not concerned with the whole set of the so-called "elementary 
particles" since most physicists believe by now that, e.g., hadrons are built from 
quarks, nor concerned with quarks since many physicists suspect they are also 
composite objects. This research concerns the true elementary building blocks of 
Nature, assuming that such set exists, whatever those building blocks are. 
Finally, we extend this research to general finite associative algebras, enlarging 
the physical applicability of our point of view concerning the role of bosons in 
Nature. 
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1. P U R P O S E  OF THIS  PAPER 

Most candidates for true elementary building blocks of Nature are 
bosons or fermions. Different statistics are associated to both kinds of 
"particles." Therefore, the question: "Are bosons or are fermions the true 
elementary building blocks?" leads to a hierarchy of elementarity between 
the two main quantum statistics: Bose-Einstein and Fermi-Dirac.  

The main purpose of our paper is further research on the existence of 
that hierarchy, and on the identification of that statistics which is more 
elementary. As a by-product, we will obtain more general results valid for 
other associative algebras than Bose or Fermi ones. 

We shall defend the heterodox point of view that it is highly probable 
that the true elementary building blocks, if they exist, are bosons. This goes 
against the widespread belief that since tensors can be constructed in terms 
of spinors, it is impossible that Universe is built from bosons only. The 
basis of that widespread belief will also be analyzed. 

2. CAUTIONS 

It is possible that the notion of elementary building blocks of Nature 
makes no sense; the sequence of macroscopic bodies, molecules, atoms, 
"elementary" particles . . . .  may be an endless succession. Therefore, unless 
explicitly stated to the contrary, we shall use, as a working hypothesis, the 
assumption that true elementary building blocks (not necessarily "particles") 
exist. 

There is no direct evidence that Bose and Fermi are the only quantum 
statistics allowed by Nature [see Section 2.2 of (K/tlnay, 1977a)]. For 
example, in most cases statistics is inferred from the spin-statistics theorem 
and the measurement of spin. But the spin-statistics theorem only insures 
that half-integer (or integer) spin "particles" are fermions (respectively, 
bosons) if no other quantum statistics than Bose and Fermi exist, so that 
such kind of inference is not conclusive. Bose-like (parabose) and Fermi-like 
(parafermi) statistics are consistent with quantum field theory (Green, 
1953). In spite of the chance we think that one should offer to such 
generalized statistics, we shall assume in this paper that Bose and Fermi are 
the only candidates for the quantum statistics of the elementary building 
blocks. However, much of the research done on the bosonization of parasta- 
tistics (Kademova, 1970) makes plausible without proving that our conclu- 
sions will not be altered too much if elementary para-"particles" are 
accepted. 
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Let us assume for a moment that quarks really exist in Nature (i.e., that 
they do not simply offer a model to describe it). If this is so, we are certainly 
not claiming that quarks are bosons! In fact the idea that quarks are not 
elementary is continuously gaining support, as the current literature on 
preons (see, e.g., Sikive, 1981) shows. Our defense of bosons as the probable 
building blocks of Nature will stand for the true elementary building blocks 
(whose existence we assumed as a working hypothesis), not to specific 
candidates to fill in that role: atoms were thought to be elementary, one 
learned they are not; later on protons (etc.) were thought to be elementary 
and now one thinks they are not; and so on. 

It is conceivable that even if true elementary building blocks exist, a 
suitable selection of them could be such that they are all bosons, but that 
another selection also exists where they are only a set of fermions. (Also 
intermediate selections are conceivable.) Now, let us assume that there is no 
hierarchy of elementarity among both selections. (Hypotheses related to this 
were considered in the literature.) If this is true, then the controversy on the 
hierarchy of elementarity between bosons and fermions would be methodo- 
logical, not physical. Our research will lead to the result that such "democ- 
racy" among fermions and bosons is false, at least under the hypothesis of 
our research. 

3. BOSONIZATION:  A RI~SU1VIE 

The Bose description of fermions or, in short, the bosonization of 
fermions, mathematically means a realization of Fermi algebra in terms of 
elements of Bose algebra. Physically it means that, given a physical theory 
whose elementary building blocks are fermions (or fermions and bosons), a 
physically equivalent theory is shown whose elementary building blocks are 
bosons only. Several different bosonizations are known as, for example, the 
one by Okubo (1974) and those quoted in Kademova (1970) and Khlnay et 
al. (1973). We shall only be concerned with that bosonization developed in a 
line of research which began in a paper by Kademova (1970) and was later 
developed in Kademova and Khlnay (1970), Khlnay (1975; 1977a, b), K~tlnay 
et al. (1973), Khlnay and Kademova (1975a, b) and Khlnay and Mac-Cotrina 
(1976). The simplest way to show this bosonization is to exhibit the model 
system described in (Kfilnay, 1977b): One starts with a system of two 
Fermi-coupled oscillators described in terms of annihilation and creation 
operators f,, f,+, 

8,ji, (1) 
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i, j = 1,2, and with the time evolution ruled by a Hamiltonian 

Hi( f ,  f+ ) - to,f-~ f, + tOzj~zf2 + XH'( f ,  f+ ) (2) 

X being a coupling constant. The elementary building blocks of the theory 
are the Fermi "particles" created by f~- and f~-. The bosonization of this 
model system is achieved by replacing those building blocks by new ones: 
four Bose oscillators described in terms of annihilation and creation opera- 
tors b r, b~ + , 

[6. b;]_= 8.z, 

Let IO) ~ be the Bose vacuum, 

so that 

br[0) ~ = 0, Vr (4) 

~ ,  the Bose state vector space, and ~p, the p-boson subspace. Then one 
looks for suitable functions f,.(b, b +) (i = 1,2) of the Bose operators and a 
well-selected Bose subspace ~ ' ,  such that, when f/(b, b +) and f/+ (b, b +) act 
on ~ ' ,  the Fermi anticommutation rules (1) are retrieved. 

The Fermi Hamiltonian (2) can also be expressed in Bose terms, as we 
shall show later on. In the quoted model the functions f ,(b,  b +) are selected 
as 

f , (b ,b+)=-b~bz+b;b4,  .fz(b,b+)=-b-~b3-bfb4 (5a) 

f~l (b,b +) =- [ f , (b ,b  +)]+= b;b,  + b~-b3,f~ (b,b +) = b;b,  - b~-b 2 

(58) 

and ~ '  is the one-boson subspace, ~ ' =  6~1, span by b + 10) "~, r = 1 . . . . .  4. The 
reader can easily verify that 

[ f i (b ,  b + ) , f f  (b,b + )]+ (b+ 10)~) = 6ii(b+ 10) ~) (6a) 

[ f (b ,b+) , f j (b ,b+)]  (b+ 10).~) = 0, i , j = l , 2  (6b) 
+ r = 1 , 2 , 3 , 4  

so that the anticommutation relations (1) of the Fermi algebra are satisfied 

r , s  = 1,2,3,4 (3) 
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in ~ t :  the one-boson subspace ~ ' =  ~ is the Bose representative of the 
Fermi state vector space ~. Moreover, by defining 

one finds that 

IO> ~ -- b~ [0> ~ ~ ~ ,  (7a) 

f~(b, b + )t0) 9 = 0, i =  1,2 (7b) 

The one-boson state 10) 9 is the representative of the Fermi vacuum. The 
Bose representatives of the other Fermi states are also easily shown to be 
one-boson states; in fact, the states 

and 

f~ (b, b + )10) 9 ~ b~-IO) '~ ~ ~ , ,  f~- (b, b + )10) 9 = b~ IO) '~ ~ ~ ,  

f~ (b,  b + ) f ]  (b ,  b + )t0) 9 =  - f~-  (b,  b + ) f~  (b,  b + )10) 9 -= b4 + [0) ~ ~ ~1 

(8) 

form, together with (7a) a suitable basis. Notice the explicit antisymmetry 
shown in equation (8). And also that the Pauli principle is verified since 

[ f~(b ,b+)]2(b+lO)q~)=[ f~(b ,b+)]2(b+lO)~)=O,  r = 1 , 2 , 3 , 4  

(9) 

This is trivial since the fi(b, b +) were selected in such a way that equations 
(6) are satisfied. In mathematical terms, what we have obtained, was a 
*-isomorphism (Rickart, 1960) between the Fermi algebra and its bosoniza- 
tion. Going back to physics, it can be shown (K/dnay and Kademova, 
1975a, and Remarks 2.1.1 and 2.1.2 of Khlnay, 1977a) that generally one 
should distinguish between the Bose Hamiltonian H'~(b, b § which rules 
the time evolution of the underlying Bose system, and the Bose representa- 
tive H~(b, b +) of the Fermi Hamiltonian which rules the time evolution of 
the f~ and if-. However, both operators can be identified, when there is no 
physical interest to do otherwise, particularly this is the case with the 
reviewed model: H~ = H ~. To be more specific, when the coupling )~H' is 
that of the model, it can be shown that the underlying Bose system evolves 
as a set of uncoupled Bose oscillators of frequencies 0, ~l,  ~~ and ~l + w2 - 
h. The operator H~ is 

H~(b,  b + ) =- H 9 [ f ( b ,  b + ), f+ (b, b + )] (10) 
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and, as a corollary of the above-mentioned isomorphism it has the same 
spectrum as that of the original Fermi Hamiltonian H e [equation (2)]. As a 
consequence of equation (10) the action of H~(b, b +) in ~ l  is identical to 
the one of H ~ ( f , f  +) on the Fermi state vector space 6)-of the original 
theory. All these statements can be independently checked by direct compu- 
tation. 

When the operators f~(b, b+), f,J (b, b § defined by equations (5) act on 
the p-bosons subspace ~p, a Bose description (bosonization) of all the 
irreducible representations of parafermi algebra (Green, 1953) is obtained, 
as can also be directly verified. From the mathematical point of view this 
shows that the bosonization has a power for unifying separate mathematical 
structures (Kademova, 1970). From the physical side, the same fact opens 
conjectural but suggestive perspectives for high energy physics (Khlnay, 
1977a). 

The bosonizati0n of general finite second quantized Fermi systems and 
the one of quantum Fermi fields follow the same pattern shown in the 
above simple model so that we shall not enter into details: we shall only 
summarize the main results (Kademova and Khlnay, 1970; Khlnay et al., 
1973; Khlnay, 1975; Khlnay and Mac-Cotrina, 1976). For finite systems 
with n annihilation and creation operators f~, f~+ of the Fermi system, 2" 
annihilation and creation operators b~, b~ + of the Bose system are needed 
and c-number coefficients F~ s can always be found such that 

f,(b,b+ )= Er   br+ (11) 
rS" 

and its Hermitian conjugate satisfy in ~ t  the Fermi algebra. General 
formulas for the F~r s are somewhat complicated, but in all specific cases (i.e., 
for each fixed numerical value of n) the F, rs take values so simple as the 
ones which for n = 2 lead to equation (5). 

When a quantum Fermi field f , (z)  is bosonized, the c-number F,r, are 
generalized to c-number functions F~r(z ,  x, x'), where ~ is a spinorial index 
and ~, ~' are tensor indices. In all cases these functions exist, and are such 
that, 

z,(z )= z fjo fjo' (z, x, 
~-~-, 

(12) 

and its Hermitian conjugate, satisfy the anticommutation relations of quan- 
tum Fermi fields. Here o is a spacelike hypersurface. 

We recalled in Section 1 that the generally accepted statement that, 
while tensors can be constructed in terms of spinors the opposite construc- 
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tion is impossible, was used to preclude the conception of a Universe built 
from bosons only. One would not forget, however, that Whittaker (1936) 
has shown that the calculus of relativistic spinors is included in the calculus 
of tensors, as well as related results by Ruse (1936) and Penney (1965a). The 
latter obtained a tensorial description of neutrinos. In our case, without 
having to refer to these papers, the manifest convariance of equation (12) 
shows that bosons can be the only building blocks even if the calculus of 
relativistic spinors is not included in the calculus of tensors: the tensor 
indices in the right-hand side of equation (12) are contracted so that only 
the spinor index remains. 

As a final remark, we mention that the Fermi algebra is not the only 
associative algebra that can be bosonized. Among several other examples in 
the literature, we can quote that Schwinger (1965) has bosonized the angular 
momentum algebra. Recently it was shown that all finite associative alge- 
bras can be bosonized, a result from which physical and mathematical 
applications follow; for example, from the bosonization of Dirac 3, ~ matrices, 
a unification of the higher spin relativistic equations of Bargmann-Wigner 
(1948) and related formalisms is achieved, in the form of a single wave 
equation (Gonzhlez-Bernardo et al. 1982; to be submitted). Our bosoniza- 
tion of an algebra is similar to the well-known bosonization of Lie-Algebras 
(Schwinger, 1965) and references quoted in (Biedenharn, 1982) and 
(Gonzhlez-Bernardo et al., to be submitted). 

4. FERMIONIZATION AND ITS DIFFICULTIES: SYNTHESIS 
OF PENNEY'S RESULTS 

By analogy with the now popular word "bosonization," let us call 
fermionization of an algebra a realization of that algebra in terms of Fermi 
annihilation and creation operators. If ~is  the Fermi state vector space, one 
may consider the eventual possibility of obtaining a fermionization in the 
whole ~ or in a subspace ~ '  c ~ only. 

Penney (1965b) is concerned with the problem of "making bosons from 
fermions," i.e., to the eventual fermionization of the Bose algebra. His main 
result can be expressed, in our terminology, as follows: 

Theorem 4.1 (Penney). As long as one considers only a finite 
number of fermions and one imposes ~ ' =  ~, the fermionization of 
the Bose algebra is not possible. 

His proof is very elegant and uses properties of Clifford algebra. He 
stresses that the theorem is limited by two hypotheses: (i) finiteness and 
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(ii) ~ ' =  ~. He shows that some fermionizations obtained in the literature 
are possible just because at least one of these conditions is violated. 

5. FERMIONIZATION AND ITS DIFFICULTIES: OUR 
APPROACH 

We shall extend Penney's Theorem 4.1 in two forms: We shall remove 
the condition ~ ' =  ~ a n d  we shall also obtain some results for algebras more 
general than Bose algebra. 

Our building blocks will be fermions, and we shall only consider (as in 
Penney's theorem) the case in which the number of annihilation and 
creation operators f~ and f,~ is finite: i = 1,2 . . . . .  n. Because of the anticom- 
mutation relations (1), the more general product I-If~ equals, up to reorder- 
ing, f l ,  f2 . . . . .  f , .  Therefore, the more general function g ( f ,  f+) of the Fermi 
operators is of the form 

g(i,.f + )= s ...z,;4., ...& 
K , L = I  

i 1 < i 2 < . . .  < i  K 
J l < J 2  < ' ' "  <JL 

(13) 

where the c.. are complex numbers (or, more generally, elements of a field). 
In equation (13) the operators are ordered in normal form, since from 
equation (1) it follows that if they were not, they could always be reordered 
to that form (without changing g) by means of a redefinition of the 
coefficients c . 

Let us now consider an associative algebra A over a field @, with 
generators A,. (For example, ~ could be the Bose algebra, in which case @ is 
the field of the complex numbers and the A, are the br, b, +.) We want a 
fermionization of d~, done in terms of the above-mentioned finite number of 
fermions. The concept of fermionization of the algebra ~ will be taken in a 
similar way as the one of bosonization of an algebra by simply replacing 
bosons by fermions as elementary building blocks, but it is more general in 
a certain sense to be discussed below. 

We define functions At(f , f  +) of the Fermi operators, and select a 
subspace ~ '  of the state vector space ~ of the fermions such that the 
operators At(f, f§ act in ~ '  in closed form: 

At( f , f+)[ '~l>~ ', Vl't'>~q',Vt (14) 

Let us call C~s the algebra generated by the At(f, f+). We shall say that C~ is 
a fermionization of the original algebra A iff d~ s is isomorphic to d~. (In case 
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is a *-algebra (Rickart, 1960) we shall further require that the isomor- 
phism is a *-isomorphism.) 

Example: If the original algebra is the Bose algebra defined by the 
commutation relations like (3), with r, s = 1,2 . . . . .  m, then At( f ,  f§  will be a 
set of functions br( f ,  f+ ), b~ + ( f , f§ ) such that 

b~(f , f  + ) ~b=, 

b~(f,f+ ) l q ' > ~  '. 

b+(f , f+)*- ,bs  + 

b + ( f , f+) l ' t ' )  ~ if ' ,  Vl,I') m if '  

(15a) 

(15b) 

[b~(f, f+ ), b~ + ( f ,  jr+ )] _ i,i, ) = 8,.,1,,i,), [b,(f ,  f+ ), b~(f, f+ )] _ pP) = O, 

vl,I,) ~ ~ '  (15c) 

and that 

b :  ( f , f + )  = [b, ( f  , f§ )] § Vr, s (15d) 

Condition (c) will guarantee that the correspondence (a) is an isomorphism; 
condition (d) will provide that it is a *-isomorphism, i.e., that the involution 
is preserved; the involution being in this case the familiar Hermitian 
conjugation. If the functions br(f, f§ b~ (f ,  f§ exist, a fermionization of 
the Bose algebra would be achieved. 

Turning back to the general case of a general associative algebra ~, the 
fact that the more general function is of the form (13), implies that if the 
fermionization is possible, the At( f ,  f§ are polynomials as 

A t ( f , f  + ) =  E c' f + " "  "ffxfj,"" "fJL' i I " " i K j  t . " j L J i l  
K , L = I  

i1<'-- < i  K 

J~<"" <JL 

(16) 

where the coefficients c.t belong to r  (They are complex numbers in the 
example.) 

Now we are prepared to prove our theorems. 

Theorem 5.1. Let us assume that an associative algebra d~ allows a 
fermionization in terms of a finite number of fermions. Then a 
matrix representation of ~ exists. 

Proof It is known that for finite number of fermions the operators 
f/, f~§ allow a finite matrix irreducible representation, its explicit form given 
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(up to unitary transformations) by Jordan and Wigner (1928). The projec- 
tion operator A such that 

A~  ', A 2 = A (17) 

as well as the polynomials A,(f ,  f+), are functions o f f ,  f+, belonging to the 
same matrix representation. Therefore, a finite matrix representation of the 
algebra ~q generated by the At( f ,  f§ exists, such that the At(f ,  f+) act in 
closed form in ~ ' .  Since the possibility of fermionization of ~ implies that 
~q is isomorphic to ~,  it results that a finite matrix representation of d~ also 
exists. �9 

Theorem 5.2. As long as one considers only a finite number of 
fermions, the fermionization of an irreducible representation of a 
finite Bose algebra is not possible. 

Proof. Put t~ = the Bose algebra defined by equations (3) (but now with 
r,s =1,2 . . . . .  m) or, more rigorously, by its Weyl form (Wightman and 
Schweber, 1955), and assume that the fermionization exists. Irreducibility 
implies, up to a unitary transformation, the Schr6dinger representation 
(Wightman and Schweber, 1955; Weyl, 1931) 

br = (qr + a/aq,)/v/~ (18) 

which does not allow for a finite matrix representation, contradicting 
Theorem 5.1. �9 

Therefore, we obtained a generalization of Theorem 4.1 since condition 
oy , ,  ~ was not used, and the proof is even simpler. 

A theorem like 5.2 could be also stated, without changes, for a Fock 
representation of an infinite Bose algebra, but we are not writing it since it 
would look artificial to try to represent such infinite algebra in terms of a 
finite Fermi algebra. 

The condition that the operators act in closed form in r is essential for 
Theorems 5.1 and 5.2. This can be visualized in terms of an example 
exhibited by Penney (1965b) in his equations (21)-(24). Penney's purpose 
was to show that apparent contradictions to this theorem were not true in 
this way. Penney's example can be discussed as follows: consider a Fermi 
system with no particle state 10) ~ and only one annihilation operator f ;  then 
J0) ~ and f+ J0) ~ span the Fermi state vector space ~; take ~ '  = (J0)); then not 
only (ff§ + f+f)6)-,= o-)-, is true, but also (if+ _f+f)o~- ,=  ~,  so that a 
fermionization of Bose algebra seems to be obtained in oy,. This fermioniza- 
tion is not possible indeed, but not because oy, is a proper subspace of ~ b u t  
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since the operators do not act in closed form in ~, for the reason that 
f + 1 0 > ~ ~  '. 

We mentioned that the fermionization of algebras under discussion is 
more general than the corresponding bosonization. In fact, the equation 
analogous to (16) for a bosonization of an algebra would be 

A, (b ,b+)  = ~ ct h+ ' "br+bs , ' "bs ,  (19) 
r I . . . r K s  I , . . S l . - r l  

K , L = I  
r l < - - .  < r K 

S l <  ' ' "  < $ L  

In the case of bosonization we have proven (Kademova, 1970; Gonzhlez- 
Bernardo et al., 1982; to be submitted) that it can be achieved with 
K = L = 1. In other words, it is not necessary to study a general operator 
like (19) in order to have the bosonization of an algebra. In particular, for 
K = L = 1 it is obvious that the operator (19) acts in closed form in ~ ' =  ~ 
(Section 3) so that for the case of a bosonization the analog of equation (14) 
is automatically satisfied and does not need to be assumed. On the other 
hand, if we would start from the analysis of the possibility of fermionization 
by only considering K = L = 1 in equation (16), the doubt would arise that 
although that case is not possible, a more general fermionization could still 
make sense. 

Finally, let us quote that certain algebras allow for a known fermioni- 
zation such that K = L =1 in equation (16). Let us quote, e.g., (i) the 
well-known fermionization of the sp in- l /2  algebra and (ii) the fermioniza- 
tion by Jagannathan and Vasudevan (1978) of para-Grassmann (K/dnay, 
1976) algebras. On the other hand, Jagannathan and Vasudevan (1978) 
fermionization of the parafermi (Green, 1953) algebra falls into the case (16) 
with K, L > 1 and ~-'= ~. 

6. DISCUSSION 

Let us assume that (i) true elementary building blocks exist, that (ii) 
they can only be bosons or fermions obeying (at least at certain stage of the 
construction of the formalism) the canonical commutation-anticommuta- 
tion relations, and that (iii) the index which labels the creation operators of 
the elementary building blocks only takes a finite number of values. It 
follows from the papers summarized in Section 3 that this set of assump- 
tions is consistent if the elementary building blocks are bosons, since an 
explicit bosonization was constructed. And from Theorem 5.2 it results that 
(i), (ii), and (iii) are inconsistent if the building blocks are fermions. 
Therefore, as long our assumptions are correct, a hierarchy of elementarity 
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exists among the quantum statistics: Bose-Einstein statistics stands for 
objects which can be elementary; Fermi-Dirac cannot stand. 

If (i) is false because an infinite sequence of sets of building blocks 
exist, each term of the sequence serving to describe the former terms but not 
vice versa (Section 2), then our conclusion is still correct in the sense that at 
each stage of the sequence, bosonization (but not fermionization) is possi- 
ble. 

If, on the other hand, hypothesis (ii) a n d / o r  (iii) are not correct, then 
we have not rigorously proven that a Bose-privileged hierarchy of elementar- 
ity exists among the quantum statistics, although they suggest that such 
privileged hierarchy is likely. 

In the case that assumption (iii) fails, it seems that a completely 
different kind of analysis should be used to search for that hierarchy, as the 
following intuitive reasoning suggests: One could say that for the finite case 
our result that fermions can always be bosonized but that bosons can never 
be fermionized is a consequence of the following fact: If (iii) holds, then the 
dimension of Fermi Fock space is finite (Pauli Principle) while that of Bose 
Fock space is infinite. (This argument is only an intuitive one: the possibil- 
ity of bosonization of fermions is suggested but not proven.) However, if 
(iii) fails, at least one half of the research is done: we reviewed in Section 3 
that bosonization of Fermi quantum fields in terms of Bose quantum fields 
holds. What remains to be investigated is the eventual fermionization of 
Bose fields. 

Bose and Fermi algebras are not the only ones used in physics. Some of 
them can be fermionized. But all finite algebras can be bosonized 
(Gonzfilez-Bernardo et al., 1982; to be submitted). Therefore, bosons are 
elementary even in other sense: all physical relations expressed in terms of a 
finite algebra can be reworded in pure Bose terms. This is true even if the 
finite algebra is related to an infinite system: for example, the bosonization 
of Dirac ~," matrices (Gonz~dez-Bernardo et al., 1982; to be submitted) 
reviewed in Section 3. 

The greatest risk of misunderstandings in this kind of work comes from 
the phrase "from spinors you can construct tensors but not vice versa, so 
that fermionization is possible, bosonization impossible." We discussed the 
matter in Section 3, but the point is so crucial that we touch it again: bosons 
and fermions "are" not only tensors and (respectively) spinors. Bosons 
"are" tensors plus commutation rules, fermions "are" spinors plus anticom- 
mutation rules. When the commutation (respectively, anticommutation) 
rules are taken into account, it results that, at least if (i)-(iii) hold, 
"bosonization is possible, fermionization impossible." And for the above 
spinor construction problem, we recall that the manifest covariance of 
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e q u a t i o n  (12) shows that  the F e r m i  f ields we bu i l t  in  t e rms  of  Bose q u a n t u m  
fields are sp inors ,  whi le  the  la t te r  are tensors .  

A n d  God said." "'Let there be light. "" 
A n d  God saw that light was good. 

(Genes i s ,  1.3, 1.4) 

W e  l ike the b e a u t y  of  l ight,  we like the  b e a u t y  of  p h o t o n s .  
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